
Journal of Sound and <ibration (1999) 226(1), 169}187
Article No. jsvi.1999.2285, available online at http://www.idealibrary.com on
A TIP-TILT ADAPTIVE OPTICS SYSTEM FOR AMATEUR
ASTRONOMERS AND OPTIMUM PLACEMENT OF

ACTUATORS

PARTHAPRATIM CHAKRABORTY

Shiva ¹echnologies Inc., 1510 Drew Road, ;nit 10&11, Mississauga, ON,
Canada ¸5S 1=7

KAMRAN BEHDINAN

Department of Mechanical Engineering, Ryerson Polytechnic ;niversity,
¹oronto, ON, Canada M5B 2KS

AND

BEHROUZ TABARROK

Department of Mechanical Engineering ;niversity of <ictoria, Canada

(Received 4 August 1998, and in ,nal form 1 April 1999)

A major concern in the design of a tip-tilt adaptive optics system, for amateur
astronomical telescopes, is to "nd optimum positions of the actuators that result in
least distortions of the mirror surface. A semi-analytical approach has been used,
wherein the mirror is modelled as a thin circular plate with a peripheral ring mass
and an elastic edge support. Modal analysis is performed to determine the natural
frequencies and mode shapes of the system. The results of the modal analysis are
incorporated in the subsequent harmonic analysis, where the response of the
system to harmonic forces, applied by the three actuators, is expressed in terms
of the Green functions. For various positions of the actuators, the maximum
distortions on the mirror surface are evaluated, and from these results, the
optimum positions of the actuators are located. The semi-analytical results are
verti"ed by purely numerical results obtained from "nite element analysis.
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1. INTRODUCTION

Despite many adavancements achieved over the years in the design of telescopes,
the ground-based telescopes still cannot match the resolution of space telescopes,
due to the presence of turbulent atmosphere in the path of light. Thus, telescopes in
space, for above the turbulent atmosphere were, until recently, regarded as the only
means of obtaining clear images. However, now developments in Adaptive Optics
(AO) have enabled astronomers to achieve image quality very close to that of the
space telescopes [1, 2].
0022-460X/99/360149#19 $30.00/0 ( 1999 Academic Press



Figure 1. Schematic representation of the tip-tilt adaptive optics system.
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As shown in Figure 1, the main elements of a tip-tilt adaptive optics system are
the tip-tilt mirror, the wavefront sensor, the beam splitter and the control system.
The AO system is mounted between the output of the telescope and the point where
the image is observed. The position of the object measured by the wavefront sensor
is fed into the control system which processes the information and controls the
tip-tilt mirror to eliminate the motion of the object.

The tip-tilt mirror is designed to tip and tilt about two axes at a frequency
as high as 100 Hz, without signi"cant surface deformations. Thus, a major
concern in the design of the tip-tilt system is to ensure that the optical surface
of the mirror does not deform signi"cantly (25]10~6 in maximum [3]) as a result
of vibrations as otherwise the image quality would su!er. Therefore, it is
important to "nd optimum positions for the actuators for minimum surface
deformations

The "nite element method (FEM) may be used to analyze the surface deforma-
tions of the mirror due to harmonic forces applied by the actuators, but this purely
numerical approach becomes time-consuming and hence expensive when the
placement of the actuators becomes part of the optimization process. Therefore, an
alternative semi-analytical approach is used here, wherein the mirror is modelled as
a thin circular plate, carrying a ring mass (the mass of the frame) and an elastic edge
support, as well as three interior actuators. Modal analysis is carried out to derive
the Green functions at the locations of the actuators. Then the response of the plate
to harmonic forces applied by the actuators is expressed in terms of these Green
functions.

Once the optimum position of the actuators is obtained, the actual deformation
of the mirror surface may be found by a "nite element analysis of the mirror.



Figure 2. The tip-tilt mirror assembly.

ADAPTIVE OPTICS SYSTEM 171
2. SYSTEM OVERVIEW

The target telescopes for this AO system are in the range of 15}25 in diameter
(with a focal ratio of F/4)5) and are meant for use by amateur astronomers.

The tip-tilt mirror assembly is shown in Figure 2. The diameter of the mirror is
2)652 in and its thickness varies from 0)46 in at the center to 0)25 in at the periphery.
The material selected for the mirror is Zerodur-543561 [4] because of its lower
weight to sti!ness ratio as compared with other materials (e.g. Pyrex). For the
material of the frame, two di!erent materials re considered, namely poly-vinyl-chloride
(PVC) and aluminium. The properties of these two materials are provided in
Table 1.

The mirror is held in the frame with the help of three evenly spaces brass clips.
The frame is attached to a triangular stainless-steel plate, which is again "xed to the
base plate. The triangular plate acts as a spring support for the mirror and the
frame, and it holds the frame in place during the tip-tilt motion. For the analysis of
the mirror assembly, it is necessary to incorporate the sti!ness of this triangular
plate spring. This was done using the ANSYS "nite element program.

The "nite element model of the plate spring is shown in Figure 3. The sti!ness of
the plate was evaluated as 12 246 lb/in. For further analysis of the mirror and the
frame assembly, this triangular plate spring was replaced by an equivalent system of
three linear springs with a sti!ness of 4082 lb/in each.



TABLE 1

Material properties for the mirror and its frame

Properties Symbol Mirror Frame

Material Zerodur-543561* Poly-vinyl chloride
Elastic limit (psi) E 13)6]106 6)0]105
Density (lb/in3) o 0)0914 0)055
Poisson's ratio l 0)24 0)4

*Reference [4].

Figure 3. Finite element model of the plate spring.
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3. ANALYTICAL FORMULATION

Vibration analysis of plates with various shapes and boundary conditions have
been well documented by Leissa [5].

Axisymmetrical vibration of a circular plate with an elastic edge beam and
a central mass was considered by Goel [6]. He obtained exact solutions in terms of
Bessel functions for the natural frequencies, and showed the e!ects of varying the
ratio of the concentrated mass to the mass of the plate and the sti!ness of the edge
beam to the sti!ness of the plate, on the eigenfrequencies of the system.

Achong [7] used the Rayleight}Ritz technique to obtain an approximate
solution for the natural frequencies of vibrating, elastically restrained, circular
plates, with a ring mass along the edge and a concentrated mass at the centre.
Numerical examples presented for various mass loading and support conditions are
shown to be in agreement with values obtained by other methods.

The vibration of circular plates supported by combinations of ring and line
supports and carrying concentrated masses was investigated by Liew [8] and Liew
and Lim [9]. He used the Rayleight}Ritz method to approximate the mode shapes
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of continuous circular plates with various edge supports and interior annular
and/or line supports.

Nicholson and Bergman [10, 11] considered the case of simply supported thick
square plates carrying concentrated masses, and expressed the response of the
system to harmonic motion in terms of the Green functions.

Azimi [12] used the modal expansion technique and the recptance method
(essentially the same as the Green function method) for the free vibration analysis of
circular plates with elastic or rigid interior supports on concentric circles in the plate.

LeClair [13] followed the same approach as Nicholson and Bergman or Azimi.
He determined the natural frequencies and mode shapes for a circular plate with
free edge and with three simple, interior supports. He determined the Green
functions for the free vibration of a free edge circular plate by modal analysis, and
used the same to derive the characteristic equation and mode shapes for a free-edge
circular plate with three interior, simple supports

In the present study, we follow the methods of Nicholson and Bergman [10, 11]
and Azimi [12]. The response of the system to harmonic forces applied by the three
actuators is expressed in terms of the Green functions obtained by the modal
analysis. The displacements are prescribed at the locations of the three actuators,
and the displacement on the plate surface is expressed in terms of the Green
functions. The surface deformation which is the di!erence between the calculated
displacement amplitude and the rigid-body de#ection, is calculated for various
positions of the actuators (the three actuators being on a concentric circle), and the
optimum position of the actuators for the minimum surface deformation is then
determined.

3.1. MODAL ANALYSIS OF A CIRCULAR PLATE WITH A RING MASS AND ELASTIC EDGE
SUPPORT

The di!erential equation for the free vibration of a thin circular plate of radius
&&a'' and thickness h (@b) is given by [14]

D+ 4 w (r, h, t)#oh
L2w
Lt2

(r, h, t)"0, (1)

where o is the mass density and + 2 is the Laplacian operator.
The #exural rigidity of the plate is

D"Eh3/12(1!l2),

where E is the Young modulus and l is the Poisson ratio of the material of the
mirror.

Using the method of separation of variables,we can express the general solution
for the normal modes as [15]
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Figure 4. An elastically supported circular plate of radius a carrying a peripheral ring mass
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where n*0 for j'0 and n*2 for j"0; J
n

represents the Bessel function of the
"rst kind of order n, and I

n
denoted the modi"ed Bessel function of the "rst kind of

order n, and j2
nj
"u

nj
a2 Joh/D, where u

nj
is the natural frequency.

The right-body modes (u
nj
"0) corresponding to n"0, 1 take the form [16]
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the values of j
nj

can be obtained by applying the boundary conditions. For a plate
with peripheral ring mass (m

r
) and elastic edge support (sti!ness of the support

being k) (see Figure 4), the boundary conditions can be written as
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Substitution of equations (2) into equations (4) and (5) and application of the
recurrence formulae for Bessel functions [17] result in the following characteristic
equation for j

nj
:
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Here, f"m
r
/ohna2 is the mass ratio and C"ka3/D is referred to as the sti!ness

ratio [6, 7].



TABLE 2

<alues of j2
nj
"u

nj
a2 Joh/D for a circular plate (l"0)3) with peripheral ring mass

(mass ratio"f) and elastic edge-support

f

C f"0)0 f"0)01 f"0)1 f"0)25 f"1)0 f"2)5 F R

1 1)37373 1)36766 1)31617 1)24126 0)992578 0)816361 F
(1)374)*

10 3)45066 3)44492 3)39314 3)30675 2)90151 2)5776 F 4)93515
(3)451)* F (4)935)*

100 4)72865 4)72843 4)72639 4)72293 4)70391 4)675540 F
(4)729)*

R 4)93515
Q * (4)935)* * * P F

*Reference [12] values.
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The values of j2
nj

(corresponding to the lowest natural frequency) for di!erent
values of f and C obtained by solving the above characteristic equation are listed in
Table 2 and compared with published values wherever available. Figures 5}7 show
the three modes of variation of j2

nj
with f and C for a circular plate with Poisson's

ratio of 0)33, respectively. From Table 2 and Figures 5}7 it is evident that when both
f and C vanish, the system corresponds to the case of a free-edge circular plate. On
the other hand, for very large values of the ring mass or sti!ness of the spring support
(i.e., as fPR or CPR), the system becomes equivalent to the case of a circular
plate simply supported around the periphery. Thus, the present system is neither
completely free, nor simply supported, but somewhere in between these two extremes.

Values of j2
nj

(n, j)9) for the mass ratio of f"0)38 are provided in Table 3.
The amplitude parameter A

nj
(or B

nj
) can be evaluated by applying the

orthogonality condition of the modes as
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where m"noha2 is the total mass of the plate, m
r

the ring-mass and d
nk

the
Kronecker delta.

Substituting from equations (2) and (3) into equation (7), we obtain the values of
A

nj
(for f"0)38), presented in Table 4.

3.2. HARMONIC ANALYSIS OF THE PLATE WITH THREE ACTUATORS

The di!erential equation for forced vibration of circular plates is

D+4 w(r, h, t)#oh
L2w
Lt2

(r, h, t)"p(r, h, t), (8)

where p is the transverse load per unit area of the plate.



Figure 5. Frequency parameter, j2
nj
, versus mass ratio, f (sti!ness ratio C"0); ***, 1st mode;

)} ) } ) }, 2nd mode; } } } 3rd mode.

Figure 6. Frequency parameter, j2
nj
, versus mass ratio, f (sti!ness ratio C"10); **, 1st mode;

.
}
.
}
.
}
, 2nd mode; } } } 3rd mode.
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Figure 7. Frequency parameter, j2
nj
, versus sti!ness ratio, C **, 1st mode; .

}
.
}
.
}
, 2nd mode;

(mass ratio f"0); } } } 3rd mode.

TABLE 3

<alues of j2
nj
"u

nj
a2Joh/D for a circular plate with ring mass nd elastic edge

support; l"0)24, f"0)38, C"0)1055

j n"0 n"1 n"2 n"3 n"4

0 0)0000 0)489565 3)93306 8)56965 14)3461
1 6)946457 16)6979 29)290 44)4449 62)0553
2 32)7397 51)9253 74)0210 98)8984 126)473
3 77)7485 106)613 138)416 173)077 210)531
4 142)254 180)896 222)483 266)962 314)284
5 226)376 274)837 326)245 380)560 437)746
6 330)169 388)469 449)715 513)878 580)929
7 453)658 521)808 592)903 666)920 743)836
8 596)859 674)865 755)815 839)691 926)473
9 759)780 847)646 938)455 1032)19 1128)84

j n"5 n"6 n"7 n"8 n"9

0 21)1364 28)8411 37)3935 46)7230 56)7814
1 82)0620 104)4262 129)120 156)123 185)418
2 156)681 189)475 224)817 262)672 303)015
3 250)728 293)621 339)174 387)153 438)129
4 364)405 417)288 472)899 531)206 592)183
5 497)768 560)592 626)189 694)530 765)591
6 650)838 723)578 799)122 877)446 958)525
7 823)627 906)268 991)737 1080)01 1171)07
8 1016)14 1108)67 1204)05 1302)26 1403)26
9 1228)38 1330)80 1436)08 1544)20 1655)14
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TABLE 4

<alues of A2
nj
" for a circular plate with ring mass and elastic edge support; l"0)24,

f"0)38, C"0)1055

j n"0 n"1 n"2 n"3 n"4

0 1)0000 7)88362 13)9065 20)3070 26)8442
1 5)52000 21)9057 34)2624 47)1672 60)3099
2 32)6531 28)6434 40)9000 53)8190 66)9896
3 67)9974 35)6778 47)6600 60)5422 73)7152
4 128)625 42)9317 54)5254 67)3282 80)4820
5 233)40)8 50)3791 61)4897 74.1760 87)2893
6 416)477 58)0068 68)5500 81)0839 94)1382
7 740)177 65)8067 75)7048 88)0523 101)0)293
8 1319)96 73)7711 82)9516 95)0806 107)961
9 2372)42 81)8947 90)2887 102)1685 114)937

j n"5 n"6 n"7 n"8 n"9

0 33)4596 40)1247 46)8225 53)5436 60)2810
1 73)5867 86)9483 100)3666 113)825 127)312
2 80)2914 93)6724 107)105 120)576 134)072
3 87)0267 100)4177 113)860 127)338 140)840
4 93)7908 107)184 120)630 134)112 147)619
5 100)5838 113)971 127)417 140)898 154)405
6 107)406 120)780 134)219 147)697 161)203
7 114)258 127)612 141)039 154)510 168)013
8 121)141 134)468 147)877 161)340 174)834
9 128)056 141)347 154)735 168)181 181)667
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The three actuators at p(b, a), q(c, b) and r (d, c) (see Figure 8) produce harmonic
forces of frequency X and unknown magnitudes P, Q and R, resulting in the forcing
term

p (r, h, t)"[Pd (r!b) d(h!a)#Qd(r!c)d (h!b)#Rd (r!d)d(h!c)] d*Xt , (9)

where i"J!1.
Using separation of variables and representing the de#ection as a series of the

vibration modes,

w(r, h, t)"
=
+
n/0

=
+
j/0

=
nj

(r, h) f
nj

(t). (10)

and substituting equations (9) and (10) in equation (8), we obtain

=
+
n/0

=
+
j/0

=
nj

(r, h) C
d2 f

nj
(t)

dt2
#u2

nj
f
nj

(t)D"[Pd(r!b)d (h!a)#Qd(r!c)d (h!b)

#Rd (r!d)d (h!c)] e*X t . (11)

Equation (11) can now be solved by following the procedure described by Volterra
and Zachmanoglou [15]. Using equations (2) and (3) and multiplying both sides of



Figure 8. A circular plate of radius a with three actuators on a concentric circle of radius b.
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equation (1) by A
mn

R
mn

(r) cos (mh), and integrating over the area of the plate, we
obtain

d2 f
nj
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dt2
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Similarly, multiplying equation (11) by B
mn

R
mn

(r) sin (mh), integrating over the area
of the plate and using the orthogonality relations for normal modes, we "nd
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Combining equations (12) and (13) and noting that A
nj
"B

nj
for n*1 and j*0

and B
0j
"0, we may solve equations (12) and (13) for f

nj
which when substituted in

equation (11) gives

w(r, h, t)"[PG
p
(r, h)#QG

q
(r, h)#RG

r
(r, h)] e*)t, (14)
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where G
p
, G

q
and G

r
are the Green functions [10, 11] corresponding to the forces P,

Q and R, respectively and are given by
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3.2.1. ¹ilt about x-axis

For tilting motion about the x-axis, the displacement at location p (see Figure 8)
is zero. If the tilt is prescribed, equation (14) will yield the following set of equations:
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"0, PG
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rr
"!A.

(16)

where A is the magnitude of the prescribed initial displacement at q and r, while G
pq

denotes the Green function of a force at a point p and evaluated at q.
Since the actuators are symmetrically placed, using partial sums as approxima-

tions for the in"nite series involved in the expression for the Green functions, we
write
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Then equations (16) can be solved for P, Q and R as

P"0, Q"!R"

A
G

1
!G

2
.

(18)

Therefore, the lateral displacement on the mirror surface can be written from
equation (14) as

w (r, h, t)"[QG (r, h, b; ))#RG (r, h, c; X)] e*)t, (19)

where Q and R are given by equation (18) and
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3.2.2. ¹ilt about y-axis

If the prescribed displacement at p is assumed as B, the corresponding displacement
prescribed at each of the location q and r will be !B/2. Then we may derive from
equation (14), in the manner described above and "nd

P"

B
(G

1
!G

2
)
, Q"R"!

B
2 (G

1
!G

2
)

(20)

The corresponding response of the mirror will be

w (r, h, t)"[PG (r, h, a; X)#QG (r, h, b; X)#RG(r, h, c; X)] e*Xt. (21)

4. RESULTS AND DISCUSSION

The deformations of the top surface of the plate can be evaluated by substracting
the values of rigid-body de#ection from the total surface de#ections. Evidently, the
maximum surface deformation depends upon the positions of the actuators.

Figures 9 and 10 show the surface deformation patterns for tilt about the x- and
y-axies respectively.

As noted earlier the material of the mirror is assumed to be Zerodur-543561 [4]
with E"13)6]106 psi, o"0)0914 lb/in3 and l"0)24. The in"nite series in
the expressions for Green functions were approximated using ten terms, i.e.,
N"J"10.
Figure 9. Actual deformation of the plate surface for various positions of the actuators: (a)
b/a"1/3, (b) b/a"1/2, (c) b/a"2/3 and (d) b/a"5/6; D"2)652 in, h"0)3 in, tilt angle"3)5]10~4

rad and frequency of vibration"100 Hz about the x-axis.



Figure 10. Actual deformation of the plate surface for various positions of the actuators: (a)
b/a"1/3, (b) b/a"1/2, (c) b/a"2/3 and (d) b/a"5/6; D"2)652 in, h"0)3 in, tilt angle"2)5]10~4

rad and frequency of vibration"100 Hz about the y-axis.
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For the solution of the characteristic equation (6), the IMSL Version 1.1 subrou-
tine ZERAL and for evaluating the Bessel functions, IMSL version 1.0 subroutines
BSJNS and BSINS were used.

For various positions of the actuators (i.e., for various b/a ratios), maximum
values of surface deformations were calculated and the results are presented in
Figures 11}16. We have presented the results only for two forcing frequencies,
namely 70 Hz and 100 Hz. For 50 Hz frequency, it was not feasible to determine
any optimum positions since the forcing frequency is too far removed from the
fundamental frequency of the plate to excite the system.

For the purpose of verifying the results obtained here, a harmonic analysis of the
mirror was carried out using the ANSYS "nite element programme. In the "nite
element analysis, the mirror was modelled as a #at circular plate consisting of 72,
20}node brick elements with wedge-shaped elements near the centre. A circular
frame is attached to the mirror along its periphery. Although, in the physical model,
the three springs attached to the frame are symmetrically placed, here, we have
placed the springs around the periphery of the frame/mirror to render the FE
model similar to the analytical model.

It can be seen that the &&equivalent FEM'' (with distributed elastic support all
around the periphery) which is equivalent to our analytical model, show essentially
the same results as the &&actual FEM''. The analytical results deviate from the FE
results for positions of actuators close to the centre of the mirror. This is due to the
fact that the thin plate model in the analytical calculations ignores the e!ects
of shear deformations and thus underestimates the deformation. However, the



Figure 11. Variation of maximum surface deformation of the plate with positions of the actuators:
D"2)652 in, h"0)3 in, f"0)25, forcing frequency"100 Hz; (a) for tilt angle of 3)5]10~4 about the
x-axis; (b) for tilt angle of 2)5]10~4 about the y-axis; n, analytical; K, equivalent FEM; £, actual
FEM.

Figure 12. Variation of maximum surface deformation of the plate with positions of the actuators:
D"2)652 in, h"0)3 in, f"0)25, forcing frequency"70 Hz; (a) for tilt angle of 3)5]10~4 about the
x-axis; (b) for tilt angle of 2)5]10~4 about the y-axis; n, analytical; K, equivalent FEM; £, actual
FEM.
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analytical model predicts the same optimum position for the actuators as the FEM
and also the di!erence between the analytical and FEA results is least at the
optimum position.

Hence, the semi-analytical method is useful for locating the optimum radial
position of the actuators for which the surface deformation would be relatively low.
Once the optimum position is located, the actual value of the surface deformation
my be easily calculated using a single model on ANYS.

It is also interesting to note, from Figures 11}16, that the optimum position
of the actuators shift further away from the centre as the mass ratio, f (i.e., ratio of
the mass of the frame to the mass of the mirror) is increased. For example, from



Figure 13. Variation of maximum surface deformation of the plate with positions of the actuators:
D"2)652 in, h"0)3 in, f"0)38, forcing frequency"100 Hz; (a) for tilt angle of 3)5]10~4 about the
x-axis; (b) for tilt angle of 2)5]10~4 about the y-axis; n, analytical; K, equivalent FEM; £, actual
FEM.

Figure 14. Variation of maximum surface deformation of the plate with positions of the actuators:
D"2)652 in, h"0)3 in, f"0)38, forcing frequency"70 Hz; (a) for tilt angle of 3)5]10~4 about the
x-axis; (b) for tilt angle of 2)5]10~4 about the y-axis; n, analytical; K, equivalent FEM; £, actual
FEM.
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Figures 11, 13 and 15, for three di!erent mass ratios (but all at the same frequency
of 100 Hz and for tilt about the x-axis), it can be seen that as the mass ratio is
increased from f"0)25 to 0)66, the optimum position of the actuators increases
from approximately b/a"0)55 at f"0)25 to b/a"0)66 at f"0)38 and b/a"0)8
at f"0)66. For su$ciently high mass ratio (f'1), the actuators should be placed
at the periphery of the mirror to keep the deformations low. From the design point
of view, it is desirable to place the actuators as close as possible to the centre, where
the displacements are the smallest and the cost of the stacked piezxoelectric
actuators would thus be least. Hence, we have selected PVC for the frame material
(for which f"0)38) instead of aluminium (for which f"0)66).



Figure 15. Variation of maximum surface deformation of the plate with positions of the actuators:
D"2)652 in, h"0)3 in, f"0)66, forcing frequency"100 Hz; (a) for tilt angle of 3)5]10~4 about the
x-axis; (b) for tilt angle of 2)5]10~4 about the y-axis; n, analytical; K, equivalent FEM; £, actual
FEM.

Figure 16. Variation of maximum surface deformation of the plate with positions of the actuators:
D"2)652 in, h"0)3 in, f"0)66, forcing frequency"70 Hz; (a) for tilt angle of 3)5]10~4 about the
x-axis; (b) for tilt angle of 2)5]10~4 about the y-axis; n, analytical; K, equivalent FEM; £, actual
FEM.
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It can be seen from, Figures 13 and 14 that the optimum position of the actuators
for our model of the mirror and frame assembly (i.e., for mirror material being
Zerodur and frame material being PVC) is at two-third the radius of the mirror.

Also, the deformation on the top surface of the mirror, corresponding to this
optimum position is equal to 41)75]10~6 in (for tilt about the x-axis), which
is higher than the allowable value of 25]10~6 in. However, the plate surface
deformations for 50 and 70 Hz frequencies are found to be 4)5]10~6 and
9)12]10~6 in, respectively, well below the acceptable limit.
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5. CONCLUDING REMARKS

The present study was carried out in aid of design for a tip-tilt adaptive optics
(AO) system for small-scale telescopes used by amateur astronomers and small
professional observatories. A major concern in the deign of tip-tilt mirrors is that
the distortion of the top surface of the mirror should be kept as low as possible
(optical design requirement is approx. 25]10~6 in maximum) to improve the
image quality. A semi-analytical approach has been developed and discussed here
for the harmonic analysis of the mirror assembly. The mirror is modelled as
a circular plate with a peripheral rings mass (equal to the mass of the frame) and
elastic edge support, and with three interior actuators. The mode shapes obtained
from the model analysis have been incorporated in the forced vibration analysis to
evaluate the response of the system to harmonic forces applied by the three
actuators. The response of the system has been expressed in terms of Green
functions. The displacements were prescribed at the locations of the actuators, and
the lateral displacements on the mirror top surface were calculated for various
positions of the actuators.

The results obtained by the semi-analytical method have been shown to be in
good agreement with the FE results, especially near the optimum positions.

The investigation was carried out for three di!erent mass ratios f (mass of frame
to the mass of mirror). It has been observed that as f increases, the actuators must
be moved farther away from the centre for optimum positions. For example, the
optimum position of the actuators for f"0)38 (corresponding to a PVC frame) is
about two-third the diameter of the mirror, while for f"0)66 (corresponding to an
aluminium frame) it is about 80% of the diameter of the mirror. Since the cost of the
piezoelectic stack depends on the amount of displacement required, PVC (with
f"0)38) has been selected as the material of the frame to keep the cost of actuators
low, for a mirror of diameter 2)652 in made of Zerodur-5453561.
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